Cloud Experts Documentation

Deploying Advanced Cluster Management and OpenShift Data Foundation for ARO Disaster Recovery

This content is authored by Red Hat experts, but has not yet been tested on every supported configuration.

A guide to deploying Advanced Cluster Management (ACM) and OpenShift Data Foundation (ODF) for Azure Red hat OpenShift (ARO) Disaster Recovery

Overview

VolSync is not supported for ARO in ACM: https://access.redhat.com/articles/7006295 so if you run into issues and file a support ticket, you will receive the information that ARO is not supported.

In today’s fast-paced and data-driven world, ensuring the resilience and availability of your applications and data has never been more critical. The unexpected can happen at any moment, and the ability to recover quickly and efficiently is paramount. That’s where OpenShift Advanced Cluster Management (ACM) and OpenShift Data Foundation (ODF) come into play. In this guide, we will explore the deployment of ACM and ODF for disaster recovery (DR) purposes, empowering you to safeguard your applications and data across multiple clusters.

Sample Architecture Sample architecture Download a Visio file of this architecture

Hub Cluster (East US Region):

  • This is the central control and management cluster of your multi-cluster environment.
  • It hosts Red Hat Advanced Cluster Management (ACM), which is a powerful tool for managing and orchestrating multiple OpenShift clusters.
  • Within the Hub Cluster, you have MultiClusterHub, which is a component of ACM that facilitates the management of multiple OpenShift clusters from a single control point.
  • Additionally, you have OpenShift Data Foundation (ODF) Multicluster Orchestrator in the Hub Cluster. ODF provides data storage, management, and services across clusters.
  • The Hub Cluster shares the same Virtual Network (VNET) with the Primary Cluster, but they use different subnets within that VNET.
  • VNET peering is established between the Hub Cluster’s VNET and the Secondary Cluster’s dedicated VNET in the Central US region. This allows communication between the clusters.

Primary Cluster (East US Region):

  • This cluster serves as the primary application deployment cluster.
  • It has the Submariner Add-On, which is a component that enables network connectivity and service discovery between clusters.
  • ODF is also deployed in the Primary Cluster, providing storage and data services to applications running in this cluster.
  • By using Submariner and ODF in the Primary Cluster, you enhance the availability and data management capabilities of your applications.

Secondary Cluster (Central US Region):

  • This cluster functions as a secondary or backup cluster for disaster recovery (DR) purposes.
  • Similar to the Primary Cluster, it has the Submariner Add-On to establish network connectivity.
  • ODF is deployed here as well, ensuring that data can be replicated and managed across clusters.
  • The Secondary Cluster resides in its own dedicated VNET in the Central US region.

In summary, this multi-cluster topology is designed for high availability and disaster recovery. The Hub Cluster with ACM and ODF Multicluster Orchestrator serves as the central control point for managing and orchestrating the Primary and Secondary Clusters. The use of Submariner and ODF in both the Primary and Secondary Clusters ensures that applications can seamlessly failover to the Secondary Cluster in the event of a disaster, while data remains accessible and consistent across all clusters. The VNET peering between clusters enables secure communication and data replication between regions.

Prerequisites

Azure Account

  1. Log into the Azure CLI by running the following and then authorizing through your Web Browser

    az login
    
  2. Make sure you have enough Quota (change the location if you’re not using East US)

    az vm list-usage --location "East US" -o table
    

    See Addendum - Adding Quota to ARO account if you have less than 36 Quota left for Total Regional vCPUs.

  3. Register resource providers

    az provider register -n Microsoft.RedHatOpenShift --wait
    az provider register -n Microsoft.Compute --wait
    az provider register -n Microsoft.Storage --wait
    az provider register -n Microsoft.Authorization --wait
    

Red Hat pull secret

  1. Log into https://cloud.redhat.com
  2. Browse to https://cloud.redhat.com/openshift/install/azure/aro-provisioned
  3. Click the Download pull secret button and remember where you saved it, you’ll reference it later.

Manage Multiple Logins

  1. In order to manage several clusters, we will add a new Kubeconfig file to manage the logins and change quickly from one context to another

    rm -rf /var/tmp/acm-odf-aro-kubeconfig
    touch /var/tmp/acm-odf-aro-kubeconfig
    export KUBECONFIG=/var/tmp/acm-odf-aro-kubeconfig
    

Create clusters

  1. Set environment variables

    export AZR_PULL_SECRET=~/Downloads/pull-secret.txt
    export EAST_RESOURCE_LOCATION=eastus
    export EAST_RESOURCE_GROUP=rg-eastus
    export CENTRAL_RESOURCE_LOCATION=centralus
    export CENTRAL_RESOURCE_GROUP=rg-centralus
    
  2. Create environment variables for hub cluster

    export HUB_VIRTUAL_NETWORK=10.0.0.0/20
    export HUB_CLUSTER=hub-cluster
    export HUB_CONTROL_SUBNET=10.0.0.0/24
    export HUB_WORKER_SUBNET=10.0.1.0/24
    export HUB_JUMPHOST_SUBNET=10.0.10.0/24
    
  3. Set environment variables for primary cluster

    export PRIMARY_CLUSTER=primary-cluster
    export PRIMARY_CONTROL_SUBNET=10.0.2.0/24
    export PRIMARY_WORKER_SUBNET=10.0.3.0/24
    export PRIMARY_POD_CIDR=10.128.0.0/18
    export PRIMARY_SERVICE_CIDR=172.30.0.0/18
    
  4. Set environment variables for secondary cluster

    Note: Pod and Service CIDRs CANNOT overlap between primary and secondary clusters (because we are using Submariner). So we will use the parameters “–pod-cidr” and “–service-cidr” to avoid using the default ranges. Details about POD and Service CIDRs are available hereexternal link (opens in new tab) .

    export SECONDARY_CLUSTER=secondary-cluster
    export SECONDARY_VIRTUAL_NETWORK=192.168.0.0/20
    export SECONDARY_CONTROL_SUBNET=192.168.0.0/24
    export SECONDARY_WORKER_SUBNET=192.168.1.0/24
    export SECONDARY_JUMPHOST_SUBNET=192.168.10.0/24
    export SECONDARY_POD_CIDR=10.130.0.0/18
    export SECONDARY_SERVICE_CIDR=172.30.128.0/18
    

Deploying the Hub Cluster

  1. Create an Azure resource group

    az group create  \
      --name $EAST_RESOURCE_GROUP  \
      --location $EAST_RESOURCE_LOCATION
    
  2. Create virtual network

    az network vnet create  \
      --address-prefixes $HUB_VIRTUAL_NETWORK  \
      --name "$HUB_CLUSTER-aro-vnet-$EAST_RESOURCE_LOCATION"  \
      --resource-group $EAST_RESOURCE_GROUP
    
  3. Create control plane subnet

    az network vnet subnet create  \
      --resource-group $EAST_RESOURCE_GROUP  \
      --vnet-name "$HUB_CLUSTER-aro-vnet-$EAST_RESOURCE_LOCATION"  \
      --name "$HUB_CLUSTER-aro-control-subnet-$EAST_RESOURCE_LOCATION"  \
      --address-prefixes $HUB_CONTROL_SUBNET 
    
  4. Create worker subnet

    az network vnet subnet create  \
      --resource-group $EAST_RESOURCE_GROUP  \
      --vnet-name "$HUB_CLUSTER-aro-vnet-$EAST_RESOURCE_LOCATION"  \
      --name "$HUB_CLUSTER-aro-worker-subnet-$EAST_RESOURCE_LOCATION"  \
      --address-prefixes $HUB_WORKER_SUBNET   
    
  5. Create the cluster

    This will take between 30 and 45 minutes

    az aro create  \
        --resource-group $EAST_RESOURCE_GROUP  \
        --name $HUB_CLUSTER  \
        --vnet "$HUB_CLUSTER-aro-vnet-$EAST_RESOURCE_LOCATION"  \
        --master-subnet "$HUB_CLUSTER-aro-control-subnet-$EAST_RESOURCE_LOCATION"  \
        --worker-subnet "$HUB_CLUSTER-aro-worker-subnet-$EAST_RESOURCE_LOCATION"  \
        --version 4.12.25  \
        --apiserver-visibility Private  \
        --ingress-visibility Private  \
        --pull-secret @$AZR_PULL_SECRET
    

Deploying the Primary cluster

  1. Create control plane subnet

    az network vnet subnet create  \
      --resource-group $EAST_RESOURCE_GROUP  \
      --vnet-name "$HUB_CLUSTER-aro-vnet-$EAST_RESOURCE_LOCATION"  \
      --name "$PRIMARY_CLUSTER-aro-control-subnet-$EAST_RESOURCE_LOCATION"  \
      --address-prefixes $PRIMARY_CONTROL_SUBNET 
    
  2. Create worker subnet

    az network vnet subnet create  \
      --resource-group $EAST_RESOURCE_GROUP  \
      --vnet-name "$HUB_CLUSTER-aro-vnet-$EAST_RESOURCE_LOCATION"  \
      --name "$PRIMARY_CLUSTER-aro-worker-subnet-$EAST_RESOURCE_LOCATION"  \
      --address-prefixes $PRIMARY_WORKER_SUBNET
    
  3. Create the cluster

    This will take between 30 and 45 minutes

    az aro create  \
      --resource-group $EAST_RESOURCE_GROUP  \
      --name $PRIMARY_CLUSTER  \
      --vnet "$HUB_CLUSTER-aro-vnet-$EAST_RESOURCE_LOCATION"  \
      --master-subnet "$PRIMARY_CLUSTER-aro-control-subnet-$EAST_RESOURCE_LOCATION"  \
      --worker-subnet "$PRIMARY_CLUSTER-aro-worker-subnet-$EAST_RESOURCE_LOCATION"  \
      --version 4.12.25  \
      --apiserver-visibility Private  \
      --ingress-visibility Private  \
      --pull-secret @$AZR_PULL_SECRET  \
      --pod-cidr $PRIMARY_POD_CIDR  \
      --service-cidr $PRIMARY_SERVICE_CIDR
    

Connect to Hub and Primary Clusters

With the cluster in a private network, we can create a jump host in order to connect to it.

  1. Create the jump subnet

    az network vnet subnet create  \
      --resource-group $EAST_RESOURCE_GROUP  \
      --vnet-name "$HUB_CLUSTER-aro-vnet-$EAST_RESOURCE_LOCATION"  \
      --name jump-subnet  \
      --address-prefixes $HUB_JUMPHOST_SUBNET    
    
  2. Create a jump host

    az vm create --name jumphost  \
        --resource-group $EAST_RESOURCE_GROUP  \
        --ssh-key-values $HOME/.ssh/id_rsa.pub  \
        --admin-username aro  \
        --image "RedHat:RHEL:9_1:9.1.2022112113"  \
        --subnet jump-subnet  \
        --public-ip-address jumphost-ip  \
        --public-ip-sku Standard  \
        --vnet-name "$HUB_CLUSTER-aro-vnet-$EAST_RESOURCE_LOCATION"
    
  3. Save the jump host public IP address

    Run this command in a second terminal
    EAST_JUMP_IP=$(az vm list-ip-addresses -g $EAST_RESOURCE_GROUP -n jumphost -o tsv  \
    --query '[].virtualMachine.network.publicIpAddresses[0].ipAddress')
    
    echo $EAST_JUMP_IP
    
  4. Use sshuttle to create a SSH VPN via the jump host (use a separate terminal session)

    Run this command in a second terminal

    Replace the IP with the IP of the jump box from the previous step

    sshuttle --dns -NHr "aro@${EAST_JUMP_IP}" $HUB_VIRTUAL_NETWORK
    
  5. Get OpenShift API routes

    HUB_APISERVER=$(az aro show  \
    --name $HUB_CLUSTER  \
    --resource-group $EAST_RESOURCE_GROUP  \
    -o tsv --query apiserverProfile.url)
    
    PRIMARY_APISERVER=$(az aro show  \
    --name $PRIMARY_CLUSTER  \
    --resource-group $EAST_RESOURCE_GROUP  \
    -o tsv --query apiserverProfile.url)
    
  6. Get OpenShift credentials

    HUB_ADMINPW=$(az aro list-credentials  \
    --name $HUB_CLUSTER  \
    --resource-group $EAST_RESOURCE_GROUP  \
    --query kubeadminPassword  \
    -o tsv)
    
    PRIMARY_ADMINPW=$(az aro list-credentials  \
    --name $PRIMARY_CLUSTER  \
    --resource-group $EAST_RESOURCE_GROUP  \
    --query kubeadminPassword  \
    -o tsv)
    
  7. Log into Hub and configure context

    oc login $HUB_APISERVER --username kubeadmin --password ${HUB_ADMINPW}
    oc config rename-context $(oc config current-context) hub
    oc config use hub
    
  8. Log into Primary and configure context

    oc login $PRIMARY_APISERVER --username kubeadmin --password ${PRIMARY_ADMINPW}
    oc config rename-context $(oc config current-context) primary
    oc config use primary
    

    You can now switch between the hub and primary clusters with oc config

Deploying the Secondary Cluster

  1. Create an Azure resource group

    az group create  \
      --name $CENTRAL_RESOURCE_GROUP  \
      --location $CENTRAL_RESOURCE_LOCATION
    
  2. Create virtual network

    az network vnet create  \
      --address-prefixes $SECONDARY_VIRTUAL_NETWORK  \
      --name "$SECONDARY_CLUSTER-aro-vnet-$CENTRAL_RESOURCE_LOCATION"  \
      --resource-group $CENTRAL_RESOURCE_GROUP
    
  3. Create control plane subnet

    az network vnet subnet create  \
      --resource-group $CENTRAL_RESOURCE_GROUP  \
      --vnet-name "$SECONDARY_CLUSTER-aro-vnet-$CENTRAL_RESOURCE_LOCATION"  \
      --name "$SECONDARY_CLUSTER-aro-control-subnet-$CENTRAL_RESOURCE_LOCATION"  \
      --address-prefixes $SECONDARY_CONTROL_SUBNET 
    
  4. Create worker subnet

    az network vnet subnet create  \
      --resource-group $CENTRAL_RESOURCE_GROUP  \
      --vnet-name "$SECONDARY_CLUSTER-aro-vnet-$CENTRAL_RESOURCE_LOCATION"  \
      --name "$SECONDARY_CLUSTER-aro-worker-subnet-$CENTRAL_RESOURCE_LOCATION"  \
      --address-prefixes $SECONDARY_WORKER_SUBNET   
    
  5. Create the cluster

    This will take between 30 and 45 minutes

    az aro create  \
        --resource-group $CENTRAL_RESOURCE_GROUP  \
        --name $SECONDARY_CLUSTER  \
        --vnet "$SECONDARY_CLUSTER-aro-vnet-$CENTRAL_RESOURCE_LOCATION"  \
        --master-subnet "$SECONDARY_CLUSTER-aro-control-subnet-$CENTRAL_RESOURCE_LOCATION"  \
        --worker-subnet "$SECONDARY_CLUSTER-aro-worker-subnet-$CENTRAL_RESOURCE_LOCATION"  \
        --version 4.12.25  \
        --apiserver-visibility Private  \
        --ingress-visibility Private  \
        --pull-secret @$AZR_PULL_SECRET \
        --pod-cidr $SECONDARY_POD_CIDR \
        --service-cidr $SECONDARY_SERVICE_CIDR
    

VNet Peering

  1. Create a peering between both VNETs (Hub Cluster in EastUS and Secondary Cluster in Central US)

    export RG_EASTUS=$EAST_RESOURCE_GROUP
    export RG_CENTRALUS=$CENTRAL_RESOURCE_GROUP
    export VNET_EASTUS=$HUB_CLUSTER-aro-vnet-$EAST_RESOURCE_LOCATION
    export VNET_CENTRALUS=$SECONDARY_CLUSTER-aro-vnet-$CENTRAL_RESOURCE_LOCATION
    
    # Get the id for $VNET_EASTUS.
    echo "Getting the id for $VNET_EASTUS"
    VNET_EASTUS_ID=$(az network vnet show --resource-group $RG_EASTUS --name $VNET_EASTUS --query id --out tsv)
    
    # Get the id for $VNET_CENTRALUS.
    echo "Getting the id for $VNET_CENTRALUS"
    VNET_CENTRALUS_ID=$(az network vnet show --resource-group $RG_CENTRALUS --name $VNET_CENTRALUS --query id --out tsv)
    
    # Peer $VNET_EASTUS to $VNET_CENTRALUS.
    echo "Peering $VNET_EASTUS to $VNET_CENTRALUS"
    az network vnet peering create --name "Link"-$VNET_EASTUS-"To"-$VNET_CENTRALUS  \
      --resource-group $RG_EASTUS  \
      --vnet-name $VNET_EASTUS  \
      --remote-vnet $VNET_CENTRALUS_ID  \
      --allow-vnet-access=True  \
      --allow-forwarded-traffic=True  \
      --allow-gateway-transit=True
    
    # Peer$VNET_CENTRALUS to $VNET_EASTUS.
    echo "Peering $VNET_CENTRALUS to $VNET_EASTUS"
    az network vnet peering create --name "Link"-$VNET_CENTRALUS-"To"-$VNET_EASTUS  \
      --resource-group $RG_CENTRALUS  \
      --vnet-name $VNET_CENTRALUS  \
      --remote-vnet $VNET_EASTUS_ID  \
      --allow-vnet-access  \
      --allow-forwarded-traffic=True  \
      --allow-gateway-transit=True
    

Connect to Secondary cluster

Since this cluster will reside in a different virtual network, we should create another jump host.

  1. Create the jump subnet

    az network vnet subnet create  \
      --resource-group $CENTRAL_RESOURCE_GROUP  \
      --vnet-name "$SECONDARY_CLUSTER-aro-vnet-$CENTRAL_RESOURCE_LOCATION"  \
      --name jump-subnet  \
      --address-prefixes $SECONDARY_JUMPHOST_SUBNET                  
    
  2. Create a jump host

     az vm create --name jumphost  \
        --resource-group $CENTRAL_RESOURCE_GROUP  \
        --ssh-key-values $HOME/.ssh/id_rsa.pub  \
        --admin-username aro  \
        --image "RedHat:RHEL:9_1:9.1.2022112113"  \
        --subnet jump-subnet  \
        --public-ip-address jumphost-ip  \
        --public-ip-sku Standard  \
        --vnet-name "$SECONDARY_CLUSTER-aro-vnet-$CENTRAL_RESOURCE_LOCATION"
    
  3. Save the jump host public IP address

    Run this command in a second terminal
    CENTRAL_JUMP_IP=$(az vm list-ip-addresses -g $CENTRAL_RESOURCE_GROUP -n jumphost -o tsv  \
    --query '[].virtualMachine.network.publicIpAddresses[0].ipAddress')
    
    echo $CENTRAL_JUMP_IP
    
  4. Use sshuttle to create a SSH VPN via the jump host

    Run this command in a second terminal

    Replace the IP with the IP of the jump box from the previous step

    sshuttle --dns -NHr "aro@${CENTRAL_JUMP_IP}" $SECONDARY_VIRTUAL_NETWORK
    
  5. Get OpenShift API routes

    SECONDARY_APISERVER=$(az aro show  \
    --name $SECONDARY_CLUSTER  \
    --resource-group $CENTRAL_RESOURCE_GROUP  \
    -o tsv --query apiserverProfile.url)
    
  6. Get OpenShift credentials

    SECONDARY_ADMINPW=$(az aro list-credentials  \
    --name $SECONDARY_CLUSTER  \
    --resource-group $CENTRAL_RESOURCE_GROUP  \
    --query kubeadminPassword  \
    -o tsv)
    
  7. Log into Secondary and configure context

    oc login $SECONDARY_APISERVER --username kubeadmin --password ${SECONDARY_ADMINPW}
    oc config rename-context $(oc config current-context) secondary
    oc config use secondary
    

    You can switch to the secondary cluster with oc config

Setup Hub Cluster

  • Ensure you are in the right context

    oc config use hub
    

Configure ACM

  1. Create ACM namespace

    cat << EOF | oc apply -f -
    apiVersion: v1
    kind: Namespace
    metadata:
      name: open-cluster-management
      labels:
        openshift.io/cluster-monitoring: "true"
    EOF
    
  2. Create ACM Operator Group

    cat << EOF | oc apply -f -
    apiVersion: operators.coreos.com/v1
    kind: OperatorGroup
    metadata:
      name: open-cluster-management
      namespace: open-cluster-management
    spec:
      targetNamespaces:
        - open-cluster-management
    EOF
    
  3. Install ACM version 2.8

    cat << EOF | oc apply -f -
    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: advanced-cluster-management
      namespace: open-cluster-management
    spec:
      channel: release-2.8
      installPlanApproval: Automatic
      name: advanced-cluster-management
      source: redhat-operators
      sourceNamespace: openshift-marketplace
    EOF
    
  4. Check if installation succeeded

    oc wait --for=jsonpath='{.status.phase}'='Succeeded' csv -n open-cluster-management \
      -l operators.coreos.com/advanced-cluster-management.open-cluster-management=''
    

    If you get the following error, it means that the installation wasn’t completed yet. Wait 3-5 minutes and run the last command again.

    error: no matching resources found
    

    A successful output should be similar to:

    clusterserviceversion.operators.coreos.com/advanced-cluster-management.v2.8.2 condit
    ion met
    
  5. Install MultiClusterHub instance in the ACM namespace

    cat << EOF | oc apply -f -
    apiVersion: operator.open-cluster-management.io/v1
    kind: MultiClusterHub
    metadata:
      namespace: open-cluster-management
      name: multiclusterhub
    spec: {}
    EOF
    
  6. Check that the MultiClusterHub is installed and running properly

    oc wait --for=jsonpath='{.status.phase}'='Running' multiclusterhub multiclusterhub -n open-cluster-management \
      --timeout=600s
    

Configure ODF Multicluster Orchestrator

  1. Install the ODF Multicluster Orchestrator version 4.12

    cat << EOF | oc apply -f -
    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      labels:
        operators.coreos.com/odf-multicluster-orchestrator.openshift-operators: ""
      name: odf-multicluster-orchestrator
      namespace: openshift-operators
    spec:
      channel: stable-4.12
      installPlanApproval: Automatic
      name: odf-multicluster-orchestrator
      source: redhat-operators
      sourceNamespace: openshift-marketplace
    EOF
    
  2. Check if installation succeeded

    oc wait --for=jsonpath='{.status.phase}'='Succeeded' csv -n openshift-operators \
      -l operators.coreos.com/odf-multicluster-orchestrator.openshift-operators=''
    

    If you get the following error, it means that the installation wasn’t completed yet. Wait 3-5 minutes and run the last command again.

    error: no matching resources found
    

    A successful output should be similar to:

    clusterserviceversion.operators.coreos.com/advanced-cluster-management.v2.8.2 condit
    ion met
    

Import Clusters into ACM

  1. Create a Managed Cluster Set

    Make sure you are running sshuttle --dns -NHr "aro@${EAST_JUMP_IP}" $HUB_VIRTUAL_NETWORK in second terminal
    oc config use hub
    
    export MANAGED_CLUSTER_SET_NAME=aro-clusters
    
    cat << EOF | oc apply -f -
    apiVersion: cluster.open-cluster-management.io/v1beta2
    kind: ManagedClusterSet
    metadata:
      name: $MANAGED_CLUSTER_SET_NAME
    
    EOF
    
  2. Retrive token and server from primary cluster

    oc config use primary
    
    PRIMARY_API=$(oc whoami --show-server)
    PRIMARY_TOKEN=$(oc whoami -t)
    
  3. Retrieve token and server from secondary cluster

    Make sure you are running sshuttle --dns -NHr "aro@${CENTRAL_JUMP_IP}" $SECONDARY_VIRTUAL_NETWORK in second terminal
    oc config use secondary
    
    SECONDARY_API=$(oc whoami --show-server)
    SECONDARY_TOKEN=$(oc whoami -t)
    

Import Primary Cluster

  1. Ensure you are in the right context

    Make sure you are running sshuttle --dns -NHr "aro@${EAST_JUMP_IP}" $HUB_VIRTUAL_NETWORK in second terminal
    oc config use hub
    
  2. Create Managed Cluster

    cat << EOF | oc apply -f - 
    apiVersion: cluster.open-cluster-management.io/v1
    kind: ManagedCluster
    metadata:
      name: $PRIMARY_CLUSTER
      labels:
        cluster.open-cluster-management.io/clusterset: $MANAGED_CLUSTER_SET_NAME
        cloud: auto-detect
        vendor: auto-detect
    spec:
      hubAcceptsClient: true
    EOF
    
  3. Create auto-import-secret.yaml secret

    cat << EOF | oc apply -f -
    apiVersion: v1
    kind: Secret
    metadata:
      name: auto-import-secret
      namespace: $PRIMARY_CLUSTER
    stringData:
      autoImportRetry: "2"
      token: "${PRIMARY_TOKEN}"
      server: "${PRIMARY_API}"
    type: Opaque
    EOF
    
  4. Create addon config for cluster

    cat << EOF | oc apply -f -
    apiVersion: agent.open-cluster-management.io/v1
    kind: KlusterletAddonConfig
    metadata:
      name: $PRIMARY_CLUSTER
      namespace: $PRIMARY_CLUSTER
    spec:
      clusterName: $PRIMARY_CLUSTER
      clusterNamespace: $PRIMARY_CLUSTER
      clusterLabels:
        cloud: auto-detect
        vendor: auto-detect
        cluster.open-cluster-management.io/clusterset: $MANAGED_CLUSTER_SET_NAME
      applicationManager:
        enabled: true
      policyController:
        enabled: true
      searchCollector:
        enabled: true
      certPolicyController:
        enabled: true
      iamPolicyController:
        enabled: true
    EOF
    
  5. Check if cluster imported

    oc get managedclusters
    

Import Secondary Cluster

  1. Create Managed Cluster

    cat << EOF | oc apply -f - 
    apiVersion: cluster.open-cluster-management.io/v1
    kind: ManagedCluster
    metadata:
      name: $SECONDARY_CLUSTER
      labels:
        cluster.open-cluster-management.io/clusterset: $MANAGED_CLUSTER_SET_NAME
        cloud: auto-detect
        vendor: auto-detect
    spec:
      hubAcceptsClient: true
    EOF
    
  2. Create auto-import-secret.yaml secret

    cat << EOF | oc apply -f -
    apiVersion: v1
    kind: Secret
    metadata:
      name: auto-import-secret
      namespace: $SECONDARY_CLUSTER
    stringData:
      autoImportRetry: "2"
      token: "${SECONDARY_TOKEN}"
      server: "${SECONDARY_API}"
    type: Opaque
    EOF
    
  3. Create addon config for cluster

    cat << EOF | oc apply -f -
    apiVersion: agent.open-cluster-management.io/v1
    kind: KlusterletAddonConfig
    metadata:
      name: $SECONDARY_CLUSTER
      namespace: $SECONDARY_CLUSTER
    spec:
      clusterName: $SECONDARY_CLUSTER
      clusterNamespace: $SECONDARY_CLUSTER
      clusterLabels:
        cloud: auto-detect
        vendor: auto-detect
        cluster.open-cluster-management.io/clusterset: $MANAGED_CLUSTER_SET_NAME
      applicationManager:
        enabled: true
      policyController:
        enabled: true
      searchCollector:
        enabled: true
      certPolicyController:
        enabled: true
      iamPolicyController:
        enabled: true
    EOF
    
  4. Check if cluster imported

    oc get managedclusters
    

Configure Submariner Add-On

  1. Create Broker configuration

    cat << EOF | oc apply -f -
    apiVersion: submariner.io/v1alpha1
    kind: Broker
    metadata:
      name: submariner-broker
      namespace: $MANAGED_CLUSTER_SET_NAME-broker
      labels:
        cluster.open-cluster-management.io/backup: submariner
    spec:
      globalnetEnabled: false
    EOF
    
  2. Deploy Submariner config to Primary cluster

    cat << EOF | oc apply -f -
    apiVersion: submarineraddon.open-cluster-management.io/v1alpha1
    kind: SubmarinerConfig
    metadata:
      name: submariner
      namespace: $PRIMARY_CLUSTER
    spec:
      IPSecNATTPort: 4500
      NATTEnable: true
      cableDriver: libreswan
      loadBalancerEnable: true
      gatewayConfig:
        gateways: 1
    EOF
    
  3. Deploy Submariner to Primary cluster

    cat << EOF | oc apply -f -
    apiVersion: addon.open-cluster-management.io/v1alpha1
    kind: ManagedClusterAddOn
    metadata:
         name: submariner
         namespace: $PRIMARY_CLUSTER
    spec:
         installNamespace: submariner-operator
    EOF
    
  4. Deploy Submariner config to Secondary cluster

    cat << EOF | oc apply -f -
    apiVersion: submarineraddon.open-cluster-management.io/v1alpha1
    kind: SubmarinerConfig
    metadata:
      name: submariner
      namespace: $SECONDARY_CLUSTER
    spec:
      IPSecNATTPort: 4500
      NATTEnable: true
      cableDriver: libreswan
      loadBalancerEnable: true
      gatewayConfig:
        gateways: 1
    EOF
    
  5. Deploy Submariner to Secondary cluster

    cat << EOF | oc apply -f -
    apiVersion: addon.open-cluster-management.io/v1alpha1
    kind: ManagedClusterAddOn
    metadata:
         name: submariner
         namespace: $SECONDARY_CLUSTER
    spec:
         installNamespace: submariner-operator
    EOF
    
  6. Check connection status for primary cluster (wait a few minutes)

    oc -n $PRIMARY_CLUSTER get managedclusteraddons submariner -o yaml
    

    Look for the connection established status. The status indicates the connection is not degraded and healthy.

    message: The connection between clusters "primary-cluster" and "secondary-cluster"
      is established
    reason: ConnectionsEstablished
    status: "False"
    type: SubmarinerConnectionDegraded
    
  7. Check connection status for secondary cluster

    oc -n $SECONDARY_CLUSTER get managedclusteraddons submariner -o yaml
    

    Look for the connection established status. The status indicates the connection is not degraded and healthy.

    message: The connection between clusters "primary-cluster" and "secondary-cluster"
      is established
    reason: ConnectionsEstablished
    status: "False"
    type: SubmarinerConnectionDegraded
    

Install ODF

Please note that when you subscribe to the ocs-operator and to odf-operator, you should change the channel from channel: stable-4.11 to channel:stable-4.12 since we are using the version 4.12 in this example.

Primary Cluster

  1. Switch the context to the primary cluster

    oc config use primary
    
  2. Follow these steps to deploy ODF into the Primary Cluster: https://cloud.redhat.com/experts/aro/odf/

Secondary Cluster

  1. Switch the context to the secondary cluster

    oc config use secondary
    
  2. Follow these steps to deploy ODF into the Secondary Cluster: https://cloud.redhat.com/experts/aro/odf/

Finishing the setup of the disaster recovery solution

Creating Disaster Recovery Policy on Hub cluster

  1. Switch the context to the hub cluster

    oc config use hub
    
  2. Create a DR policy to enable replication between primary and secondary cluster

    cat << EOF | oc apply -f -
    apiVersion: ramendr.openshift.io/v1alpha1
    kind: DRPolicy
    metadata:
      name: drpolicy
    spec:
      drClusters:
        - primary-cluster
        - secondary-cluster
      schedulingInterval: 5m
    EOF
    
  3. Wait for DR policy to be validated

    This can take up to 10 minutes
    oc get drpolicy drpolicy -o yaml
    

    You should see

    status:
      conditions:
      - lastTransitionTime: "2023-10-06T22:54:48Z"
        message: drpolicy validated
        observedGeneration: 2
        reason: Succeeded
        status: "True"
        type: Validated
    
  4. Two DRClusters are also created

    oc get drclusters
    

    You should see

    NAME                AGE
    primary-cluster     16m
    secondary-cluster   16m
    

Creating the Namespace, the Custom Resource Definition, and the PlacementRule

  1. First, log into the Hub Cluster and create a namespace for the application:

    cat <<EOF | oc apply -f -
    apiVersion: v1
    kind: Namespace
    metadata:
     name: busybox-sample
    EOF
    

    Now, still logged into the Hub Cluster create a Custom Resource Definition (CRD) for the PlacementRule installed in the busybox-sample namespace. You can do this by applying the CRD YAML file before creating the PlacementRule. Here are the steps:

  2. Install the CRD for PlacementRule

    cat <<EOF | oc apply -f -
    apiVersion: apiextensions.k8s.io/v1
    kind: CustomResourceDefinition
    metadata:
      name: placerules.apps.open-cluster-management.io
    spec:
      group: apps.open-cluster-management.io
      names:
        kind: PlacementRule
        listKind: PlacementRuleList
        plural: placerules
        singular: placerule
      scope: Namespaced
      versions:
        - name: v1
          served: true
          storage: true
          schema:
            openAPIV3Schema:
              type: object
    EOF
    
  3. Create the PlacementRule

    cat <<EOF | oc apply -f -
    apiVersion: apps.open-cluster-management.io/v1
    kind: PlacementRule
    metadata:
      name: busybox-placementrule
      namespace: busybox-sample
    spec:
      clusterSelector:
        matchLabels:
          name: primary-cluster
      schedulerName: ramen
    EOF
    

Create application and failover

  1. Create an application with ACM

    cat << EOF | oc apply -f -
    apiVersion: app.k8s.io/v1beta1
    kind: Application
    metadata:
      name: busybox-sample
      namespace: busybox-sample
    spec:
      componentKinds:
      - group: apps.open-cluster-management.io
        kind: Subscription
      descriptor: {}
      selector:
        matchExpressions:
          - key: app
            operator: In
            values: 
              - busybox-sample
    ---
    apiVersion: apps.open-cluster-management.io/v1
    kind: Channel
    metadata:
      annotations:
        apps.open-cluster-management.io/reconcile-rate: medium
      name: busybox-sample
      namespace: busybox-sample
    spec:
      type: Git
      pathname: 'https://github.com/RamenDR/ocm-ramen-samples'
    ---
    apiVersion: apps.open-cluster-management.io/v1
    kind: Subscription
    metadata:
      annotations:
        apps.open-cluster-management.io/git-branch: main
        apps.open-cluster-management.io/git-path: busybox-odr
        apps.open-cluster-management.io/reconcile-option: merge
      labels:
        app: busybox-sample
      name: busybox-sample-subscription-1
      namespace: busybox-sample
    spec:
      channel: busybox-sample/busybox-sample
      placement:
        placementRef:
          kind: PlacementRule
          name: busybox-placementrule
    EOF 
    
  2. Associate the DR policy to the application

    cat <<EOF | oc apply -f -
    apiVersion: ramendr.openshift.io/v1alpha1
    kind: DRPlacementControl
    metadata:
      labels:
        cluster.open-cluster-management.io/backup: resource
      name: busybox-placementrule-drpc
      namespace: busybox-sample
    spec:
      drPolicyRef:
        name: drpolicy
      placementRef:
        kind: PlacementRule
        name: busybox-placementrule
        namespace: busybox-sample
      preferredCluster: $PRIMARY_CLUSTER
      pvcSelector:
        matchLabels:
          appname: busybox-sample
    EOF
    
  3. Failover sample application to secondary cluster

    cat <<EOF | oc apply -f -
    apiVersion: ramendr.openshift.io/v1alpha1
    kind: DRPlacementControl
    metadata:
      labels:
        cluster.open-cluster-management.io/backup: resource
      name: busybox-placementrule-drpc
      namespace: busybox-sample
    spec:
      action: Failover
      failoverCluster: $SECONDARY_CLUSTER
      drPolicyRef:
        name: drpolicy
      placementRef:
        kind: PlacementRule
        name: busybox-placementrule
        namespace: busybox-sample
      pvcSelector:
        matchLabels:
          appname: busybox-sample
    EOF
    
  4. Verify application runs in secondary cluster

    Make sure you are running sshuttle --dns -NHr "aro@${CENTRAL_JUMP_IP}" $SECONDARY_VIRTUAL_NETWORK in second terminal
    oc config use secondary
    
    oc get pods -n busybox-sample
    

Cleanup

Once you’re done it’s a good idea to delete the cluster to ensure that you don’t get a surprise bill.

Delete the clusters and resources

az aro delete -y  \
  --resource-group rg-eastus  \
  --name hub-cluster

az aro delete -y  \
  --resource-group rg-eastus  \
  --name primary-cluster

az group delete --name rg-eastus

az aro delete -y  \
  --resource-group rg-centralus  \ 
  --name secondary-cluster

az group delete --name rg-centralus

Additional reference resources:

Interested in contributing to these docs?

Collaboration drives progress. Help improve our documentation The Red Hat Way.

Red Hat logo LinkedIn YouTube Facebook Twitter

Products

Tools

Try, buy & sell

Communicate

About Red Hat

We’re the world’s leading provider of enterprise open source solutions—including Linux, cloud, container, and Kubernetes. We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

Subscribe to our newsletter, Red Hat Shares

Sign up now
© 2023 Red Hat, Inc.